What does emphatic lengthening tell us about binary length distinctions?

Aaron Braver* TTU Cognitive Science Brown Bag

* Based on joint work with Shigeto Kawahara, Keio University

WHAT IS BINARY?

Why do linguists—and others—care?

Ferdinand de Saussure

 Binary oppositions are "the means by which units of language have value or meaning; each unit is defined against what it is not" (Fogarty 2005)

Roman Jakobson

 "The binary opposition is the child's first logical operation" (Jakobson and Halle, 1956:47)

Binary duration contrasts

Vowel length

Japanese	9:		
obasan	"aunt"	obaasan	"old lady"
ki	"tree"	kii	"key"
se	"height"	see	"gender"
0	"tail"	00	"king"
fu	"gluten"	fuu	"seal"

• Consonant length:

Japanese	saka	"hill"	sakka	"author"
Italian	fato	"fate"	fatto	"fact"

Estonian: an exception?

- sata "hundred"
- saata "send!"
- saaata "to get"
- "Faced with a three-way surface contrast, a blatant *prima facie* insult to the phonological number two" a number of authors have sought ways to say "this doesn't count" (Prince 1980).

Why are length contasts binary?

- Option 1: phonology just <u>is</u> binary
- Option 2: it's hard to produce greater (e.g. ternary, quaternary...) distinctions
- Option 3: it's hard to perceive more fine-grained distinctions

Emphatic lengthening

That lecture was so boring

500 5000

s0000

s00000

Emphatic lengthening in Japanese

- Adjectives lengthen their stem-final vowel to show emphasis
- ita + i = itai pain adj. painful stem suffix adjective

Emphatic lengthening in Japanese

Japanese orthography	Transcription	Condition	Gloss
a. いたい	[itai]	no emphasis	'painful'
b. いたーい	[itaai]	level 1 emphasis	'painful' (emphatic)
c. いたーーい	[itaaai]	level 2 emphasis	'painful' (very emphatic)
dいたーーーい	[itaaaai]	level 3 emphasis	'painful' (very very emphatic)
e. いたーーーい	[itaaaaai]	level 4 emphasis	'painful' (very * 3 emphatic)
f. いたーーーーい	[itaaaaaai]	level 5 emphasis	'painful' (very * 4 emphatic)

Procedure

- 7 female native Japanese speakers
- Shown stimuli in carrier sentences, 10 repetitions, randomized

(6 adjectives * 6 emphasis levels * 10 blocks)

A speaker's production of "too", level 5 emphasis

Stats

- No pairwise comparisons, to avoid Type I error:
 - 6 emphasis levels * 7 speakers (* 3 vowel types)
- Post-hoc linear regressions
- 95% CI error bars

Some things to notice...

- The "worst" speakers had the smallest range (533 ms for the worst vs. 975 ms for the best)
- All speakers showed a qualitative, binary distinction between noemphasis and level 1

But...

- Japanese has a binary duration contrast
 - Does that make them better?
 - Does that make them more binary?

Experiment 2: English

- 7 target intensifier words:
 - -very
 - too
 - -way
 - super
 - -mad
 - Really
- Placed in a carrier sentence:
 - That guy is <u>soooo</u> creepy

Emphasis levels

• 6 levels of emphasis, based on orthography:

No emphasis	SO
Level 1	soo
Level 2	s000
Level 3	s0000
Level 4	\$00000
Level 5	s000000

Procedure

- 8 female native English speakers
- Shown stimuli in carrier sentences, 10 repetitions, randomized

Results

 All speakers show correlation significant to p < 0.001 between emphasis level and duration

Some things to notice...

- The "worst" speakers had the smallest range
- All speakers showed a qualitative, binary distinction between noemphasis and level 1

Why are length contasts binary?

- Option 1: phonology just *is* binary
- Option 2: it's hard to produce greater (e.g. ternary, quaternary...) distinctions
- Option 3: it's hard to perceive more fine-grained distinctions

Vowel inventory size

Vowels of American English

An improbable vowel system

So...

- Vowel quality is diffuse throughout perceptual space
- So is vowel length
- Like vowel quality, it's a general trend, not a universal

Experiment 3: English listeners

- 24 native English speakers
- Did not participate in previous study

Stimuli

- Tokens selected from "top" 3 English speakers
- 3 speakers * 3 items * 6 emphasis levels
- Blocked by speaker, randomized within blocks

Confusion matrix

		Level of Stimulus					
		0	1	2	3	4	5
e	0	42.75	1.39	0.14	0.14	0.25	0.24
Noc	1	35.69	10.06	5.80	2.92	1.18	1.21
esp	2	12.21	28.50	20.98	11.17	6.81	4.41
Listeners' I	3	5.44	<u>33.19</u>	<u>35.11</u>	32.93	26.57	21.37
	4	2.94	19.97	26.10	<u>34.42</u>	36.62	<u>38.23</u>
	5	0.98	6.85	11.83	18.41	28.38	34.16
% response per stimulus level							