

ACAL 56: UNIVERSITY OF MINNESOTA

CLICK PERCEPTION

IN NGUNI: NEW EXPERIMENTAL EVIDENCE

Aaron Braver†‡, Wm G Bennett†,
Camilla Christie†, Tyler Miller†, Khethani Yende†

† Rhodes University
‡ Texas Tech University

aaronbraver.com/acal56

THE PUZZLE

3

P-MAPPING CLICKS

- ▶ Steriade (2001/2008) P-map: confusability of a given contrast...
 - ▶ is different in different contexts
 - ▶ projects relative ranking of faithfulness constraints (less distinct ~> less important to distinguish)
- ▶ This sets up oddball expectations for clicks:
 - ▶ faithfulness for "clickiness" is supreme (predicts clicks are hard to get rid of)
 - ▶ faithfulness among clicks less crucial (because less salient)
 - ▶ unfaithful click-to-click mappings should exist (but they don't)

a.	V_V	C_V	V_R	V_I	V_T	C_T
Obstruent voicing						
p/b	p/b	p/b	p/b	p/b	p/b	p/b
t/d	t/d	t/d	t/d	t/d	t/d	t/d
k/g	k/g	k/g	k/g	k/g	k/g	k/g
s/z	s/z	s/z	s/z	s/z	s/z	s/z

THE PUZZLE

2

A BIT OF A CONUNDRUM

- ▶ Why are clicks...?
 - ▶ Hand 1: super salient (the only Cs consistently louder than Vs, e.g.)
 - ▶ Hand 2: rare, restricted, limited in distribution qua consonants
- ▶ There are contradictory intuitions afoot
 - ▶ Clicks are very easy to recognize...as different from nonclicks
 - ▶ Click vs click distinctions don't seem nearly so easy to discern

THE PUZZLE

3

P-MAPPING CLICKS

- ▶ Steriade (2001/2008) P-map: confusability of a given contrast...
 - ▶ is different in different contexts
 - ▶ projects relative ranking of faithfulness constraints (less distinct ~> less important to distinguish)
- ▶ This sets up oddball expectations for clicks:
 - ▶ faithfulness for "clickiness" is supreme (predicts clicks are hard to get rid of)
 - ▶ faithfulness among clicks less crucial (because less salient)
 - ▶ unfaithful click-to-click mappings should exist (but they don't)

HAND 1: CLICKS ARE EASY

4

CLICKS SHOULD BE EASY TO PERCEIVE

- ▶ Ladefoged & Traill (1994:45), IXōō
 - ▶ "clicks are probably the most salient consonants"
 - ▶ clicks easier to ID than non-clicks
- ▶ masking level test: confounds loudness and spectral distribution
- ▶ only looked at plain [θ | ! | ǂ] vs. pulmonic consonants (doesn't establish any click~click baseline)

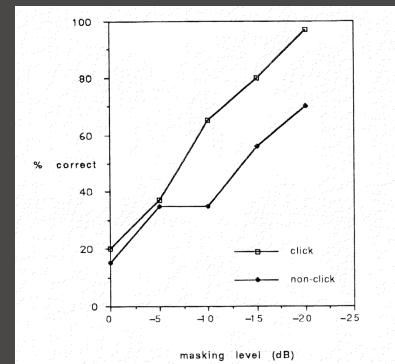


Figure 6. The perceptual saliency of clicks and non-clicks.

CLICKS SHOULD BE EASY TO PERCEIVE

- ▶ Most previous studies of click perception focus on **non-native** listeners (Best et al. 1988, 1999, 2003, 2008, 2020, among others)
 - ▶ American click-naïve listeners do not perceive clicks as speech sounds
 - ▶ Click-naïve listeners still extremely good at AXB discrimination (worst participant still 81% correct, cf. Zulu listener avg. 87%)
- ▶ Best et al. (2003) compare Sesotho & Zulu listeners, but both groups listened only to fricative clicks from IX6ō, which are an obviously non-native category for them
- ▶ Point: none of these establish clear baseline expectations for the perceptibility of, e.g., different Zulu click contrasts by Zulu-speaking listeners

CLICKS ARE PERCEIVED TO BE DIFFICULT

- ▶ Anecdotal evidence abounds that people regard clicks as complex and difficult to master
 - ▶ probably not **just** an artifact of eurocentrism in descriptions ("*exotic!*")
 - ▶ Articulatory complexity seems obviously higher than non-clicks
 - ▶ RU undergraduates describe clicks as hard - even L1 Xhosa speakers
- ▶ Try it and see
 - ▶ click contrast test 1
 - ▶ click contrast test 2

FAILED ATTEMPTS AT REPLICATING PREVIOUS FINDINGS

- ▶ **Pilot 1:** ABX task, attempting to probe type vs accompaniment contrasts, using vlv intervals excised from real words, both Xhosa and click-experienced English speakers (Miller 2020)
 - ▶ all participants at chance (top performer ~54%) 😬
- ▶ **Pilot 2:** AXB task, new stimuli recordings of nonce a!a sequences
 - ▶ all participants still at chance; they can't discriminate
 - ▶ very much at odds with Best's findings; even L1 listeners failed to recover the contrasts from this set of stimuli

TODAY'S EXPERIMENT: DESIGN

- ▶ AXB paradigm, audio presentation, all CVCV nonce sequences
- ▶ Bipartite structure, stimuli recorded by Khethani Yende
- ▶ Side A: click type contrasts (c ~ q ~ x) (dental ~ alveolar ~ lateral)
 - ▶ intended to probe for differences based on dialect/accent
 - ▶ is c ~ q variation rooted in perceptual difference? (Yende 2023, in prep)
- ▶ Side B: two tranches
 - ▶ "Count" (!ada vs !a!a) (cf. Gallagher 2010)
 - ▶ "Site" (!ada vs da!a)
 - ▶ Each side served as distractors from the other

PARTICIPANTS

- Batch 1 (2023): 12 L1 speakers of Zulu recruited by Khethani Yende using word of mouth + snowball sampling
- Targeted recruitment to probe for regional/dialect variation
 - one group of speakers from Gauteng (=urban Zulu, "Sowetan" Zulu)
 - one group of speakers from KZN ("proper" Zulu, "deep" Zulu)
- Batch 2 (2025): 33 more Zulu speakers recruited on campus at Rhodes University; some from Gauteng, some KZN, some Eastern Cape
- All could also speak multiple languages (English, etc.)

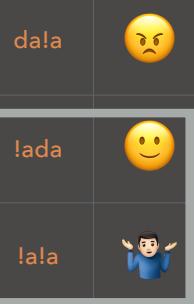
PERCEPTIBILITY VARIATION BY PLACE

c ~ q	
c ~ x	
x ~ q	

- "Click type": synonymous with front closure place of articulation distinctions
[IPA key: c = | x = || q = !]
- c ~ q: attested as free variation (Gunnink 2014)
-> Yende's hypothesis: speakers with free variation struggle to perceive contrast
- c ~ x: predictions unclear
- x ~ q: predictions unclear

PERCEPTIBILITY VARIATION BY CLICK CONTEXT

da!a	
!ada	
!a!a	


- Some contradictory intuitions here
 - !ada > da!a would make sense bc initial prominence
 - But: da!a > !ada makes sense if the preceding vowel carries some of the acoustic cues of !
- Cross-interaction likely; different contrasts are made with different cues (burst vs VOT, e.g.)
- Also, count is a thing we looked at (!ada vs !a!a)

PERCEPTIBILITY VARIATION BY CLICK CONTEXT

Site	da!a	
	!ada	
!a!a		

- Some contradictory intuitions here
 - !ada > da!a would make sense bc initial prominence
 - But: da!a > !ada makes sense if the preceding vowel carries some of the acoustic cues of !
- Cross-interaction likely; different contrasts are made with different cues (burst vs VOT, e.g.)
- Also, count is a thing we looked at (!ada vs !a!a)

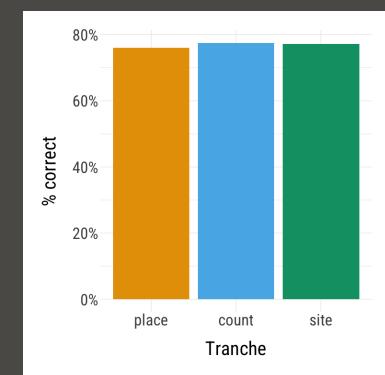
PERCEPTIBILITY VARIATION BY CLICK CONTEXT

"Count"

- Some contradictory intuitions here
 - !ada > dala would make sense bc initial prominence
 - But: dala > !ada makes sense if the preceding vowel carries some of the acoustic cues of !
- Cross-interaction likely; different contrasts are made with different cues (burst vs VOT, e.g.)
- Also, count is a thing we looked at (!ada vs !ala)

RESULTS

ANALYSIS

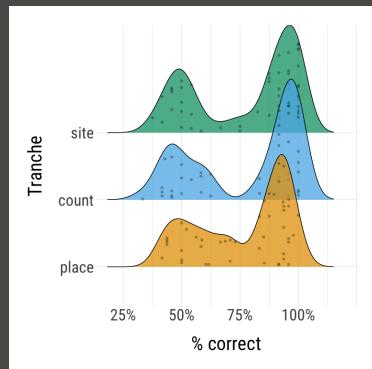

- Logistic mixed effects model (via `glmer`)
- Fixed effects: tranche, batch, place, correct answer, province
- Random effects: intercepts for item and participant
- Marginal means computed and pairwise tests (via `marginaleffects`)

BIRD'S EYE VIEW

- Correct perception is similar in each tranche:

Tranche	% correct
place	76.08%
count	77.53%
site	77.15%

- More in line with Best's prior work

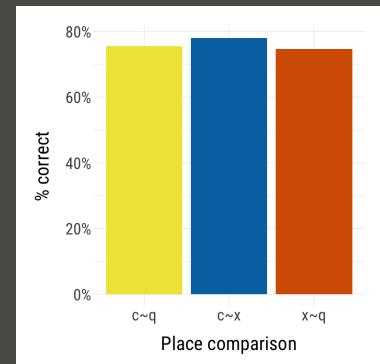


RESULTS

BIRD'S EYE VIEW

- Correct perception is similar in each tranche:

Tranche	% correct
place	76.08%
count	77.53%
site	77.15%

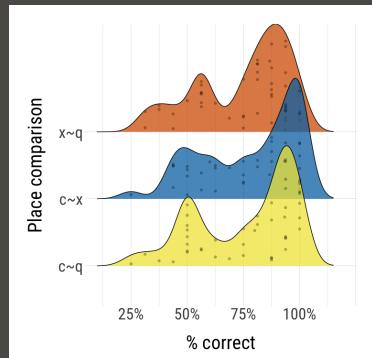


17

RESULTS

PLACE COMPARISONS

Places	% correct
c ~ q dental ~ alveolar	75.51%
c ~ x dental ~ lateral	78.04%
x ~ q lateral ~ alveolar	74.69%

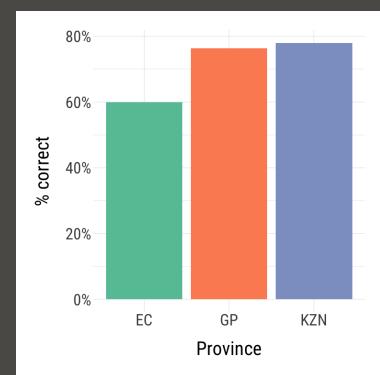


18

RESULTS

PLACE COMPARISONS

Places	% correct
c ~ q dental ~ alveolar	75.51%
c ~ x dental ~ lateral	78.04%
x ~ q lateral ~ alveolar	74.69%

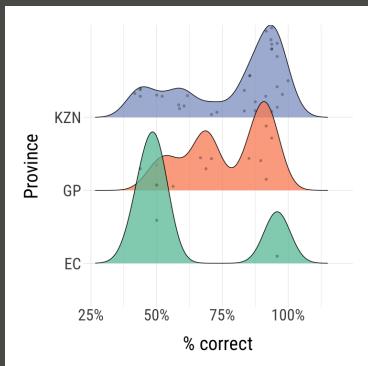


19

RESULTS

PLACE TRIALS BY PROVINCE

Province	% corr.
Eastern Cape (EC)	59.90%
Gauteng (GP)	76.41%
KwaZulu-Natal (KZN)	78.01%

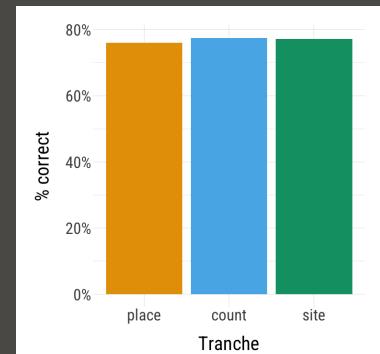


20

RESULTS

PLACE TRIALS BY PROVINCE

Province	% corr.
Eastern Cape (EC)	59.90%
Gauteng (GP)	76.41%
KwaZulu-Natal (KZN)	78.01%

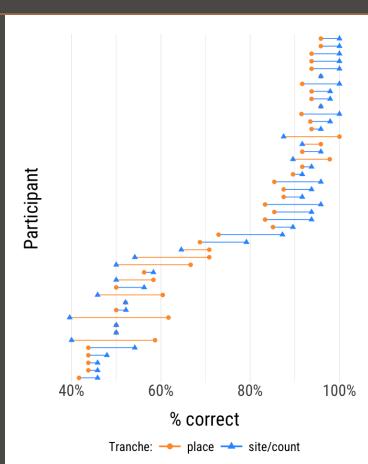

21

RESULTS

BIRD'S EYE VIEW

- Correct perception is similar in each tranche:

Tranche	% correct
place	76.08%
count	77.53%
site	77.15%



22

RESULTS

BY INDIVIDUAL

- Most individuals: site/count > place—but not all

23

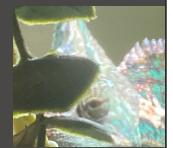
SIYAGQIBA NGOKU

CONCLUSION

- We have established now that the procedure we used in expt 3 is a good way to get some functional baselines
- Bimodality: why?
 - Intrinsic variation in population? Attention to task? Both?
- Similarity across tranches
- Click vs. non-click should be easy
- Click vs. click might be harder
- Participants equally good/bad at both types

24

NEXT STEPS


- ▶ Further task effects remain to be studied
 - ▶ CV vs. VCV vs. CVCV stimuli
 - ▶ ABX vs AXB vs. oddball
- ▶ Individual-level patterns remain to be examined further
 - ▶ Are there good perceivers and bad perceivers?
- ▶ Place (c ~ q ~ x) vs. accompaniment (q ~ nq ~ ngq ~ gq); interaction?
- ▶ Click-naïve vs. click-experienced listeners (SA vs. US English L1s)
- ▶ Cue weighting within each accompaniment (e.g. pitch effects)

THANKS!

- ▶ Thanks are due to many people who assisted with or contributed to this work, including Bonny Sands, Catherine T. Best, Didier Demolin, Eva-Marie Bloom-Ström, Mark de Vos, Senamile Mchunu, Nancy Klaas, Zoleka Maqwili, Hlumi Kondile, Nezi Gangani, Sive Bavuma, Thasky Fatyi, a chameleon (who donated the color scheme for these slides), an audience at LSA, and all of you fine folks.

aaronbraver.com/acal56

REFERENCES

Best, Catherine T., Gerald W. McRoberts, and Nomathemba M. Sithole. 1988. "Examination of perceptual reorganization for nonnative speech contrasts: Zulu click discrimination by English-speaking adults and infants." *Journal of Experimental Psychology: Human Perception and Performance* 14: 45-60.

Best, Catherine T., and Robert A. Avery. 1999. "Left hemisphere advantage for click consonants is determined by linguistic significance." *Psychological Science* 10: 65-69.

Best, Catherine T., Anthony Traill, Allyson Carter, K. David Harrison, and Alice Faber. 2003. "Ixóó click perception by English, Isizulu, and Sesotho listeners." *Proceedings of the 15th International Congress of Phonetic Sciences*, Barcelona, Spain, August 3-9, 2003. Universitat Autònoma de Barcelona, pp. 853-856.

Best, Catherine T. 2020. *Perception of Non-native Click Consonant Contrasts: Implications for Theories of Speech Perception*. In: Sands, Bonny (ed.) *Click consonants*. Leiden: Brill.

Gallagher, Gillian. 2010. "Perceptual distinctness and long-distance laryngeal restrictions." *Phonology* 27: 435-480.

Gunnink, Hilde. 2014. "The grammatical structure of Sowetan tsotsaala." *Southern African Linguistics and Applied Language Studies* 32: 161-171.

Ladefoged, Peter, and Anthony Traill. 1994. "Clicks and their accompaniments." *Journal of Phonetics* 22: 33-64.

Miller, Tyler. 2020. *isiXhosa Click Perception in Non-Native Speakers*. Unpublished Honours thesis, Rhodes University.

Steriade, D. 2001. *The Phonology of Perceptibility Effect: The P-map and Its Consequences for Constraint Organization*. Manuscript, UCLA. Version updated 2008.

Yende, Khethani. 2023. *Rural-Urban IsiZulu Click Phoneme Variation*. Unpublished Honours thesis, Rhodes University.